pacman::p_load(tmap, tidyverse, sf)In-class Excercise 3: Analytical Mapping
Installing and Loading Packages
Import the Data
NGA_wp <- read_rds("data/rds/NGA_wp.rds")Visualising distribution of non-functional water point
p2 <- tm_shape(NGA_wp) +
tm_fill("total_wp",
n = 10,
style ="equal",
palette = "Blues") +
tm_borders(lwd = 0.1,
alpha = 1) +
tm_layout(main.title = "Distribution of total water point by LGAs",
legend.outside = FALSE)p1 <- tm_shape(NGA_wp) +
tm_fill("wp_functional",
n = 10,
style ="equal",
palette = "Blues") +
tm_borders(lwd = 0.1,
alpha = 1) +
tm_layout(main.title = "Distribution of functional water point by LGAs",
legend.outside = FALSE)tmap_arrange(p2, p1, nrow=1)
Choropleth Map for Rates
Deriving Proportion of Functional Water Points and Non-Functional Water Points
NGA_wp <- NGA_wp %>%
mutate(pct_functional = wp_functional/total_wp) %>%
mutate(pct_nonfunctional = wp_nonfunctional/total_wp)Plotting map of rate
tm_shape(NGA_wp) +
tm_fill("pct_functional",
n = 10,
style ="equal",
palette = "Blues",
legend.hist = TRUE) +
tm_borders(lwd = 0.1,
alpha = 1) +
tm_layout(main.title = "Rate map of functional water points",
legend.outside = TRUE)
Extreme Value Maps
Percentile Map
Data Preparation
Exclude records with NA by using the code chunk below
NGA_wp <- NGA_wp %>%
drop_na()Creating customised classification and extracting values
percent <- c(0, .01, .1, .5, .9, .99, 1)
var <- NGA_wp["pct_functional"]%>%
st_set_geometry(NULL)
quantile(var[,1], percent) 0% 1% 10% 50% 90% 99% 100%
0.0000000 0.0000000 0.2169811 0.4791667 0.8611111 1.0000000 1.0000000
Creating the get.var function
get.var <- function(vname,df){
v <- df[vname]%>%
st_set_geometry(NULL)
v <- unname(v[,1])
return(v)
}A percentile mapping function
percentmap <- function(vnam, df, legtitle=NA, mtitle="Percentile Map"){
percent <- c(0, .01, .1, .5, .9, .99, 1)
var <- get.var(vnam, df)
bperc <- quantile(var, percent)
tm_shape(df) +
tm_polygons() +
tm_shape(df) +
tm_fill(vnam,
title=legtitle,
breaks=bperc,
palette="Blues",
labels=c("< 1%", "1% - 10%", "10% - 50%", "50% - 90%", "90%")) +
tm_borders() +
tm_layout(main.title = mtitle,
title.position = c("right","bottom"))
}percentmap("pct_functional", NGA_wp)
Box Map
ggplot(data = NGA_wp,
aes(x = "",
y = wp_nonfunctional)) +
geom_boxplot()
Creating the boxbreaks function
boxbreaks <- function(v,mult=1.5) {
qv <- unname(quantile(v))
iqr <- qv[4] - qv[2]
upfence <- qv[4] + mult * iqr
lofence <- qv[2] - mult * iqr
# initialize break points vector
bb <- vector(mode="numeric",length=7)
# logic for lower and upper fences
if (lofence < qv[1]) { # no lower outliers
bb[1] <- lofence
bb[2] <- floor(qv[1])
} else {
bb[2] <- lofence
bb[1] <- qv[1]
}
if (upfence > qv[5]) { # no upper outliers
bb[7] <- upfence
bb[6] <- ceiling(qv[5])
} else {
bb[6] <- upfence
bb[7] <- qv[5]
}
bb[3:5] <- qv[2:4]
return(bb)
}Creating the get.var function
get.var <- function(vname,df) {
v <- df[vname] %>% st_set_geometry(NULL)
v <- unname(v[,1])
return(v)
}Test drive the newly created function
var <- get.var("wp_nonfunctional", NGA_wp)
boxbreaks(var)[1] -56.5 0.0 14.0 34.0 61.0 131.5 278.0
Boxmap function
boxmap <- function(vnam, df,
legtitle=NA,
mtitle="Box Map",
mult=1.5){
var <- get.var(vnam,df)
bb <- boxbreaks(var)
tm_shape(df) +
tm_polygons() +
tm_shape(df) +
tm_fill(vnam,title=legtitle,
breaks=bb,
palette="Blues",
labels = c("lower outlier",
"< 25%",
"25% - 50%",
"50% - 75%",
"> 75%",
"upper outlier")) +
tm_borders() +
tm_layout(main.title = mtitle,
title.position = c("left",
"top"))
}tmap_mode("plot")
boxmap("wp_nonfunctional", NGA_wp)
Recode zero
NGA_wp <- NGA_wp %>%
mutate(wp_functional = na_if(
total_wp, total_wp < 0))